Stereospecificity of aminoglycoside-ribosomal interactions.
نویسندگان
چکیده
Aminoglycoside antibiotics bind to the A-site decoding region of bacterial rRNA causing mistranslation and/or premature message termination. Aminoglycoside binding to A-site RNA decoding region constructs is established here to be only weakly stereospecific. Mirror-image prokaryotic A-site decoding region constructs were prepared in the natural D-series and the enantiomeric L-series and tested for binding to a series of aminoglycosides. In general, aminoglycosides bind to the D-series decoding region constructs with 2-3-fold higher affinities than they bind to the enantiomeric L-series. Moreover, L-neamine, the enantiomer of naturally occurring D-neamine, was prepared and shown to bind approximately 2-fold more weakly than D-neamine to the natural series decoding region construct, a result consistent with weakly stereospecific binding. The binding of naturally occurring D-neamine and its synthetic L-enantiomer was further evaluated with respect to binding to prokaryotic and eukaryotic ribosomes. Here, weak stereospecifcity was again observed with L-neamine being the more potent binder by a factor of approximately 2. However, on a functional level, unnatural L-neamine proved to inhibit in vitro translation with significantly lower potency (approximately 5-fold) than D-neamine. In addition, both L- and D-neamine are bacteriocidal toward Gram-(-) bacteria. L-Neamine inhibits the growth of E. coli and P. aeruginosa with 8- and 3-fold higher MIC than D-neamine. Interestingly, L-neamine also inhibits the growth of aminoglycoside-resistant E. coli, which expresses a kinase able to phosphorylate and detoxify aminoglycosides of the D-series. These observations suggest that mirror-image aminoglycosides may avoid certain forms of enzyme-mediated resistance.
منابع مشابه
Docking of cationic antibiotics to negatively charged pockets in RNA folds.
The binding of aminoglycosides to RNA provides a paradigm system for the analysis of RNA-drug interactions. The electrostatic field around three-dimensional RNA folds creates localized and defined negatively charged regions which are potential docking sites for the cationic ammonium groups of aminoglycosides. To explore in RNA folds the electronegative pockets suitable for aminoglycoside bindin...
متن کاملDeterminants of aminoglycoside-binding specificity for rRNA by using mass spectrometry.
We have developed methods for studying the interactions between small molecules and RNA and have applied them to characterize the binding of three classes of aminoglycoside antibiotics to ribosomal RNA subdomains. High-resolution MS was used to quantitatively identify the noncovalent binding interactions between mixtures of aminoglycosides and multiple RNA targets simultaneously. Signal overlap...
متن کاملThe molecular basis for A-site mutations conferring aminoglycoside resistance: relationship between ribosomal susceptibility and X-ray crystal structures.
Aminoglycoside antibiotics target the 16S ribosomal RNA (rRNA) bacterial A site and induce misreading of the genetic code. Point mutations of the ribosomal A site may confer resistance to aminoglycoside antibiotics. The influence of bacterial mutations (introduced by site-directed mutagenesis) on ribosomal drug susceptibility was investigated in vivo by determination of minimal inhibitory conce...
متن کاملNovel paromamine derivatives exploring shallow-groove recognition of ribosomal-decoding-site RNA.
Natural aminoglycoside antibiotics recognize an internal loop of bacterial ribosomal-decoding-site RNA by binding to the deep groove of the RNA structure. We have designed, synthesized, and tested RNA-targeted paromamine derivatives that exploit additional interactions on the shallow groove face of the decoding-site RNA. An in vitro transcription-translation assay of a series of 6'-derivatives ...
متن کاملAminoglycoside activity observed on single pre-translocation ribosome complexes.
Aminoglycoside-class antibiotics bind directly to ribosomal RNA, imparting pleiotropic effects on ribosome function. Despite in-depth structural investigations of aminoglycoside-RNA oligonucleotide and aminoglycoside-ribosome interactions, mechanisms explaining the unique ribosome inhibition profiles of chemically similar aminoglycosides remain elusive. Here, using single-molecule fluorescence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 41 33 شماره
صفحات -
تاریخ انتشار 2002